Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Water Res ; 195: 117002, 2021 May 01.
Article in English | MEDLINE | ID: covidwho-1117788

ABSTRACT

COVID-19 patients can excrete viable SARS-CoV-2 virus via urine and faeces, which has raised concerns over the possibility of COVID-19 transmission via aerosolized contaminated water or via the faecal-oral route. These concerns are especially exacerbated in many low- and middle-income countries, where untreated sewage is frequently discharged to surface waters. SARS-CoV-2 RNA has been detected in river water (RW) and raw wastewater (WW) samples. However, little is known about SARS-CoV-2 viability in these environmental matrices. Determining the persistence of SARS-CoV-2 in water under different environmental conditions is of great importance for basic assumptions in quantitative microbial risk assessment (QMRA). In this study, the persistence of SARS-CoV-2 was assessed using plaque assays following spiking of RW and WW samples with infectious SARS-CoV-2 that was previously isolated from a COVID-19 patient. These assays were carried out on autoclaved RW and WW samples, filtered (0.22 µm) and unfiltered, at 4 °C and 24 °C. Linear and nonlinear regression models were adjusted to the data. The Weibull regression model achieved the lowest root mean square error (RMSE) and was hence chosen to estimate T90 and T99 (time required for 1 log and 2 log reductions, respectively). SARS-CoV-2 remained viable longer in filtered compared with unfiltered samples. RW and WW showed T90 values of 1.9 and 1.2 day and T99 values of 6.4 and 4.0 days, respectively. When samples were filtered through 0.22 µm pore size membranes, T90 values increased to 3.3 and 1.5 days, and T99 increased to 8.5 and 4.5 days, for RW and WW samples, respectively. Remarkable increases in SARS-CoV-2 persistence were observed in assays at 4 °C, which showed T90 values of 7.7 and 5.5 days, and T99 values of 18.7 and 17.5 days for RW and WW, respectively. These results highlight the variability of SARS-CoV-2 persistence in water and wastewater matrices and can be highly relevant to efforts aimed at quantifying water-related risks, which could be valuable for understanding and controlling the pandemic.


Subject(s)
COVID-19 , Wastewater , Humans , RNA, Viral , Rivers , SARS-CoV-2 , Temperature , Water
2.
Sci Total Environ ; 760: 144309, 2021 Mar 15.
Article in English | MEDLINE | ID: covidwho-968050

ABSTRACT

Human enteric pathogens are a major global concern, as they are responsible for thousands of preventable deaths every year. New pathogens in wastewater are constantly emerging. For example, SARS-CoV-2 has been recently detected in domestic sewage and primary sludge. Knowledge about the reduction of viruses in wastewater treatment and their partitioning between the treated liquid effluent versus the sludge or biosolids is still very scarce, especially in countries with emerging economies and tropical climates. Upflow anaerobic sludge blanket (UASB) reactors are among the top three most commonly used technologies for the treatment of sewage in Latin America and the Caribbean, and their use has become increasingly common in many other low- and middle-income countries. High-rate algal ponds (HRAP) are regarded as a sustainable technology for the post-treatment of UASB effluent. This study evaluated the overall reduction and the liquid-solid partitioning of somatic coliphages, F-specific coliphages, and E. coli in a pilot-scale system comprised of a UASB reactor followed by HRAPs treating real wastewater. Average log removal for somatic and F-specific coliphages were 0.40 and 0.56 for the UASB reactor, and 1.15 and 1.70 for HRAPs, respectively. The overall removal of both phages in the system was 2.06-log. Removal of E. coli was consistently higher. The number of viruses leaving the system in the UASB solids and algal biomass was less than 10% of the number leaving in the clarified liquid effluent. The number of E. coli leaving the system in solids residuals was estimated to be approximately one order of magnitude higher than the number of E. coli leaving in the liquid effluent. Results from this study demonstrate the suitability of UASB-HRAP systems to reduce viral and bacterial indicators from domestic sewage and the importance of adequately treating sludge for pathogen reduction before they are used as biosolids.


Subject(s)
COVID-19 , Sewage , Anaerobiosis , Bioreactors , Caribbean Region , Escherichia coli , Humans , Ponds , SARS-CoV-2 , Waste Disposal, Fluid
SELECTION OF CITATIONS
SEARCH DETAIL